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Ordering kinetics of defect structures
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We show how the continuity equations expressing conservation of topological point or string defect charge
can be used to determine the order-parameter correlation function for the phase-ordering kineti€3(of the
model in the special case where the order parameter is constrained to be near a defect core. In this regime we
find a self-consistent solution by assuming the order parameter is Gaussian. The resulting linear equation for
the order-parameter correlation function has as its solution the Ohta-Jasnow-Kawasaki form.
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We show here that the phase-ordering kinetics of defectsiary field correlation function. The second approach,
in the O(n) model can be self-consistently evaluated assumeriginated by Mazenk6], determines 5p self-consistently
ing that, infinitesimally close to the defect cores, the ordetthrough the solution of a nonlinear eigenvalue problem. A
parameter is a Gaussian field. This, in turn, clarifies the nakey point we make here is that it is not necessary that
ture of recent determinations of defect correlation functions= f p.
for the O(n) model[1-3]. We consider systems with either  Since the order-parameter correlation function is a rather
point defects i=d, whered is the spatial dimensionalityor  structureless quantity that does not give a great deal of direct
string defects f=d—1). In addition to their importance in information about the underlying disordering agents, Liu and
condensed matter, these systems are also relevant to prdidazenko[1] examined the correlations between the defects
lems in cosmological structure formatipd]. Our approach themselves. The key element in this work was, following
is based on the recently derivéd] continuity equation ex- Halperin[11], to identify the positions of the defects with the
pressing conservation of topological defect charge and difzeros of the order-parameter field, which could, in turn, be
fers from previous calculations that make more direct use ofnapped onto the zeros of a Gaussian auxiliary field. The
the time-dependent Ginzburg-Land@IDGL) equation for  point defect charge density correlation functiép was de-
the nonconserved order parame{&,7]. The continuity termined using this technique in terms of the constrained
equation for systems supporting string defects has not apy,antity f. Sincef was not determined in the calculation, it

peared previously and is established here. These continuiwas assumed thdt=fp in order to make further progress.

equations are used to find the equation satisfied by the ordef’:-Or large defect separation§, was found to agree with
i 4

parameter correlation function where the order parameter | umerical simulation$12] and experimentgl3] relevant to
restricted to be infinitesimally close to a defect core. Since i
he casen=2. However, forn=2 the theory produced an

is easy to confuse the usual order-parameter correlation func- hvsical di & at short led dist <
tion with the correlation function for the order parameterunIO ysical divergence iy, at short-scaled distancesaue

constrained to be near a defect core, we will, for reasons thd & nonanalytic piece in auxiliary field correlation function
will become clear below, refer to this constrained quantity ad or &t smallx. This nonanalytic piece occurs in the most
the auxiliary field correlation functiofi. We obtain a linear elementary self-consistent theory fbgp [7] but Mazenko
equation forf that has as its solution the Ohta-Jasnow-and Wickham[2] have since shown that one can construct
Kawasaki(OJK) [8] form. Since the equation is linear, the the theory so thafop is analytic inx. This development
Gaussian assumption is consistent. highlights the difference between the order-parameter corre-
Most of the focus in phase-ordering kinetics has been oation function, whose short distance non-analyticities are es-
developing theories for the order-parameter correlation funcsential and lead to the observed generalized Porod’'$1djv
tion. The belief has developed that we have a fairly goodor the structure factor, and which must be smooth in order
understanding of how to calculate this quantity in the lateto have sensible theories of defect position and velddi}
time scaling regime. Two theories have evolved that map theorrelations. Thd obtained from OJK is smooth.
order-parameter field onto an auxiliary field and invoke the The approach we take in this paper is distinct and inde-
so-called Gaussian closure approximation. Since these thependent from that used by OJK or that developefbin The
ries determine the auxiliary field correlation function using atechnique used here is directly based on considerations of
method that is seemingly independent from the one usetbpological charge conservation and is less directly based on
here, we shall refer to the correlation function for this uncon-the TDGL model. This leads to the important difference that
strained auxiliary field agop. The OJK method, with elabo- we treat quantities that are constrained to be evaluated at the
rations by other$9,10], leads to a simple form for the aux- defect core.
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The system studied here has a defect dynamics generatg@ct |,ﬁ|~|_ on average. At equal timeg,&t,=t) in the
by the TDGL model for a nonconservedcomponent vector  scaling regime the auxiliary field correlation function can be

order parameteg(rt): written solely in terms of the scaled length=]r,
23 SE —r4]/L(t). Hencef(12)=f(x).
_lﬂ: K=-T—, (1) The emphasis in this paper is on defect densities like the
t SYr charge density for point defects, given in terms of the order

. o - i i parameter by11]
wherel is a kinetic coefficient, an# is a Ginzburg-Landau

effective free energy assumed to be of the form p=05( ,j,)p, (6)
C - - where the Jacobian associated with the change of variables
F=[ el swirvan). e i e change
from the set of defect positions to the figldis defined by
The coefficientc is positive and the potentidl is assumed 1
to be of theO(n)-symmetric, degenerate double-well form. D= mfﬂlﬂz...ﬂnéylpz...VnV,LllﬂVlVM%Z' : 'Vﬂn%n-
We assume that the quench is from an initial high- ' %)
temperature disordered state to zero temperature so the usual
noise term in Eq(1) is set to zero. €40, -uy, 1S the n-dimensional fully antisymmetric tensor

In.prewous work[7] on the order-parameter correlation and summation over repeated indices in Ef).is implied.
function progress was made by mapping the order parameter It was shown in a direct manner jB] that p satisfies the

lZl onto an auxiliary ﬁ6|d’ﬁ, with the requirement thaway continuity equation for topological charge:
from the defect cores

J -
= o, @ VLI, ®)

where i, is the magnitude on in the ordered phase. Physi- \yhere the currend® is defined as

cally, we interpretn to be the position relative to the nearest

defect and expect thatear the defect cores w1 ; ]
Ja - (n_l)| EaMZ.-AMneleZ"'VnKVJ_ ’uzl/jvz. -V, l//v .

n n

J=am+bm(m)2+ - - . (4 (9)

where the coefficienta andb depend on the details of the The derivation of Eq(8) is independent of the details of the
potential V. Equation; (3) and (4) represent topological TDGL model, except that Ed1) is first order in time. Since
charge= 1 defects, which have the lowest energy and domi-j(K) g multiplied by the defect-locating function we can

nate the late-time regimgl6]. In the theory for order- replaceK in J®) by the part ofK that does not vanish as
parameter correlatiorig] property(3) is crucial, whereas, in -

the theory of defect motion presented here propéflyis y—0. For a nonconierved order parameter this means that
relevant since we always work near the defect cores. we can setK=I"cV?y in Eq. (8). Equation(8) is in the
In the simplest model§6,7], considered here, the auxil- Standard form of a continuity equation, allowing us to iden-

iary field m, defined everywhere, is assumed to be a GausdilYy the vortex velocity field as

ian field with a normalized correlation functidndefined as 3K
5 f(12)- MDM(2) - V=" (10
" VSo(1)S(2)

where it is assumed that the velocity field is used inside

with 8,,Sp(1)=(m,(1)m,(1)). Here we use the shorthand expressio_ns multiplied by the vortex—lpca}tiﬂg‘unction..
mﬂ(l)=mM(F1,t1)- If £ is determined within a theory of the For string defects the charge density is a vector given by

order-parameter correlation functif,7] it is referred to as [11]
fop. However, if (Fl,tl) and (Fz,tz) are constrained to be p :5((/;)w (12)
the coordinates of defect coréds the constrained quantity “ “

mentioned in the first paragraph, which is used exclusively inyith
the calculations below. Near a defect core the linear part of

Eq. (4) allows one to identify the order-parameter correlation 1
function with the auxiliary field correlation functioh Wa= 17 €apypy - mp€ryvy vV ¥y Vv Vi Y-
It is well established that for late timesfollowing the (12

guench the dynamics obey scaling and the system can be

described in terms of a single growing lendttt), which is  As in [5] one can obtain the continuity equation satisfied by
characteristic of the spacing between defects. For a noncom., by combining the two identities

served order parametér(t)~t*? at late times. Since we

. > . o K
interpret|m| to be the distance to the nearest defect we ex- wa_vﬁ‘](aﬁ) (13
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and )
K,w,=343V g, (14)
to obtain
IPa ARILI)
— = VAl 8hIG]. (15)

The string defect current tensdi‘fﬁ) is defined as
1
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function of f and its derivatives. The right-hand side of Eq.
(19) involves the evaluation of

Ng(12=(m(1)]D(1) s m(2)1357(2)), (29

which, like the evaluation of5,, factors into products of

averages over tha separate components of. We easily
find

K _ _qn
(a,B)_ (n—1)! Eaﬁ#z“'#nevlvz'-vnK”lvﬂzw”z' ’ .V/‘Lnl/,”n' NB(lz):n!FCB(A)n lxﬁ’ (25)
(16 where, in the scaling regimé, is given by
For the important case of=2, d=3 we can write 1 h
K Tl2x (26
ng;:vawﬁ—vﬁwa 17 L X
and identify the string velocity as andB is
B
-1 . . B=— 2
v=—(wXg), (18) E (27)
w
- 5 with
whereg=e¢, , K, Vi, [17].
We use the continuity equation for topological charge to 2B = i V264 ng2>f 28
determine the auxiliary field correlation function. We begin ™= 4% 7 o : (28)

by examining point defects and require that the exact equa-

tion
d >
(P(Dp(2)) =V (M) (1p(2))

+V2(p(1) o[ (2)13(2))

be satisfied at equal times. The presence obthenctions in
Eqg. (19) enables us to use relatigd) to replacezZ with the

19

Gaussian auxiliary fieldn in Eq. (19). The left-hand side of
Eq. (19 involves the point defect charge density correlation

function defined by

G,(12)=(p(1)p(2)). (20

As shown in[1], G, factors into a product of Gaussian av-
erages, which can be evaluated in terms of the constrdined

Eq. (5), using standard methods. In the scaling regi@g
has the form

G,(12)= gL(2><n ) (21)
with g(x) given by
OLIC o C I
andh given by
h=— Z—: (23

with y=1/\/1—f2. In the earlier calculatiofil] the function

f was undetermined at this point and the assumption was
made thatf =fqp, which was determined from theories of

the order parameté6,7]. However, here we can use Eq9)

to determinef, the constrained quantity, directly. It is clear
that the left-hand side of Eq19) is a complicated nonlinear

We have defineds?==%,4([V,mg]%)/n? and o=Sy/L?,
which are both constants at late times.

Having compiled these results, it is easy to see that Eq.
(19) reduces, in the scaling regime, to

i[h”+xh”’1h’]: i[Ehnfl] (29)
K ax dx '
where we have defined the constant
L 20
K= ST (30
Equation(29) can be integrated to give
d h)=B 31
/_L&(X )— , ( )

with the integration constant determined to be zero by the
condition thatf andh vanish asx— . Equation(28) shows

us thatB is the derivative of a quantity that vanishesxat
—o, Thus we can integrate E¢31) yet again, and use Eq.
(23), to obtain the remarkable final result:

2)

—uxf' =V2f+ f, (32

which is linear inf.
For string defects, the analogous calculation involves
evaluating the averages in

J v, s (K)
ﬁ(pa(l)pﬁ(2)>_vy (AL ()13, (L)ps(2))

+V P(p(1) 5[ 4(2)13%)(2)).
(33
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The string charge density correlation function

Gop(12=(pa(1)pp(2))

was first worked out by Liu and Mazenka] with the scal-
ing result

(34

1 ~ A ~ A
G.p5(12)= ﬁ[GT(X)( Sap™XaXp) T GL(X)XXg]

(39
where the transverse function is
s | h\"~1sh 36
1(X)=n! X X (36)
and the longitudinal function is
n
G .(x)=n!|= (37)
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where we have used the relation

ns?

=(=V?H)|x=o=np. (40)

The constanj is fixed through a choice of the length scale
L, sinceL= 4T cut'? Since Eq.(32) is linear, the prob-
ability distribution governing the auxiliary field is Gaussian
for all times. We are therefore lead directly, without any
approximation except that the order parameter field can be
treated as Gaussian near its zeros, to a self-consistent result.

It should be noted that at leading order in a systematic
largeN approximation scheme for a color inddkBray and
Humayun[10] were able to recover the previousig hoc
Oono-Puri[9] extension of OJK, which, in turn, givesx-
actly Eq. (32). In the development here, E(2) arises with-
out the need for any such approximations.

This work emphasizes the distinction between theories of
the order-parameter correlation function, such as in F&f.

his defined in Eq(23). We evaluate the average appearingand theories concerning defect correlation functions, where it
on the right-hand side of E¢33) using the same techniques appears one can self-consistently use the Gaussian closure
that were used in the point defect case and easily obtain approximation if one uses the OJK form for the auxiliary

( 5[rﬁ<1>]J;K;<1)p5<2>>=n!ch(A)”*[%aaﬁy—%yaaéé)

whereA is defined in Eq(26) andB in Eq. (27). Substitution

of the results(35) and (38) into Eq. (33) leads to separate
equations for the longitudinal and transverse component
Both equations reduce to E¢32). Thus the same linear

equation determines for both point and string defects.
The solution of Eq(32) is of the OJK form,

f(x)=exp— %xz, (39

S

field correlation function. The theory of order-parameter cor-
relations does a superior job determining the nonequilibrium
exponent governing the decay of two-time autocorrelation
functions[7,18], but the use of the theory presented here for
defect correlations, with its smooth OJK-like auxiliary field,
avoids the difficulties due to nonanalyticities at smalllhe
reconciliation between theories of the order-parameter corre-
lation function and the theory presented here, involving de-
fect densities, is an interesting area of current research.
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