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Ordering kinetics of defect structures

Gene F. Mazenko and Robert A. Wickham
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 11 July 1997!

We show how the continuity equations expressing conservation of topological point or string defect charge
can be used to determine the order-parameter correlation function for the phase-ordering kinetics of theO(n)
model in the special case where the order parameter is constrained to be near a defect core. In this regime we
find a self-consistent solution by assuming the order parameter is Gaussian. The resulting linear equation for
the order-parameter correlation function has as its solution the Ohta-Jasnow-Kawasaki form.
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PACS number~s!: 05.70.Ln, 64.60.Cn, 64.75.1g, 98.80.Cq
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We show here that the phase-ordering kinetics of defe
in theO(n) model can be self-consistently evaluated assu
ing that, infinitesimally close to the defect cores, the or
parameter is a Gaussian field. This, in turn, clarifies the
ture of recent determinations of defect correlation functio
for the O(n) model @1–3#. We consider systems with eithe
point defects (n5d, whered is the spatial dimensionality! or
string defects (n5d21). In addition to their importance in
condensed matter, these systems are also relevant to
lems in cosmological structure formation@4#. Our approach
is based on the recently derived@5# continuity equation ex-
pressing conservation of topological defect charge and
fers from previous calculations that make more direct use
the time-dependent Ginzburg-Landau~TDGL! equation for
the nonconserved order parameter@6,7#. The continuity
equation for systems supporting string defects has not
peared previously and is established here. These contin
equations are used to find the equation satisfied by the or
parameter correlation function where the order paramete
restricted to be infinitesimally close to a defect core. Sinc
is easy to confuse the usual order-parameter correlation f
tion with the correlation function for the order parame
constrained to be near a defect core, we will, for reasons
will become clear below, refer to this constrained quantity
the auxiliary field correlation functionf . We obtain a linear
equation for f that has as its solution the Ohta-Jasno
Kawasaki~OJK! @8# form. Since the equation is linear, th
Gaussian assumption is consistent.

Most of the focus in phase-ordering kinetics has been
developing theories for the order-parameter correlation fu
tion. The belief has developed that we have a fairly go
understanding of how to calculate this quantity in the la
time scaling regime. Two theories have evolved that map
order-parameter field onto an auxiliary field and invoke
so-called Gaussian closure approximation. Since these t
ries determine the auxiliary field correlation function using
method that is seemingly independent from the one u
here, we shall refer to the correlation function for this unco
strained auxiliary field asf OP. The OJK method, with elabo
rations by others@9,10#, leads to a simple form for the aux
571063-651X/98/57~3!/2539~4!/$15.00
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iliary field correlation function. The second approac
originated by Mazenko@6#, determinesf OP self-consistently
through the solution of a nonlinear eigenvalue problem.
key point we make here is that it is not necessary thaf
5 f OP.

Since the order-parameter correlation function is a rat
structureless quantity that does not give a great deal of di
information about the underlying disordering agents, Liu a
Mazenko@1# examined the correlations between the defe
themselves. The key element in this work was, followi
Halperin@11#, to identify the positions of the defects with th
zeros of the order-parameter field, which could, in turn,
mapped onto the zeros of a Gaussian auxiliary field. T
point defect charge density correlation functionGr was de-
termined using this technique in terms of the constrain
quantity f . Since f was not determined in the calculation,
was assumed thatf 5 f OP in order to make further progress
For large defect separations,Gr was found to agree with
numerical simulations@12# and experiments@13# relevant to
the casen52. However, forn52 the theory produced an
unphysical divergence inGr at short-scaled distancesx due
to a nonanalytic piece in auxiliary field correlation functio
f OP at small x. This nonanalytic piece occurs in the mo
elementary self-consistent theory forf OP @7# but Mazenko
and Wickham@2# have since shown that one can constru
the theory so thatf OP is analytic in x. This development
highlights the difference between the order-parameter co
lation function, whose short distance non-analyticities are
sential and lead to the observed generalized Porod’s law@14#
for the structure factor, andf , which must be smooth in orde
to have sensible theories of defect position and velocity@15#
correlations. Thef obtained from OJK is smooth.

The approach we take in this paper is distinct and in
pendent from that used by OJK or that developed in@6#. The
technique used here is directly based on consideration
topological charge conservation and is less directly based
the TDGL model. This leads to the important difference th
we treat quantities that are constrained to be evaluated a
defect core.
2539 © 1998 The American Physical Society
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The system studied here has a defect dynamics gene
by the TDGL model for a nonconservedn-component vector
order parametercW (rW,t):

]cW

]t
5KW [2G

dF

dcW
, ~1!

whereG is a kinetic coefficient, andF is a Ginzburg-Landau
effective free energy assumed to be of the form

F5E ddr S c

2
~¹cW !21V~ ucW u! D . ~2!

The coefficientc is positive and the potentialV is assumed
to be of theO(n)-symmetric, degenerate double-well form
We assume that the quench is from an initial hig
temperature disordered state to zero temperature so the
noise term in Eq.~1! is set to zero.

In previous work@7# on the order-parameter correlatio
function progress was made by mapping the order param
cW onto an auxiliary fieldmW , with the requirement thataway
from the defect cores

cW 5c0m̂, ~3!

wherec0 is the magnitude ofcW in the ordered phase. Phys
cally, we interpretmW to be the position relative to the neare
defect and expect thatnear the defect cores

cW 5amW 1bmW ~mW !21••• ~4!

where the coefficientsa andb depend on the details of th
potential V. Equations ~3! and ~4! represent topologica
charge61 defects, which have the lowest energy and do
nate the late-time regime@16#. In the theory for order-
parameter correlations@7# property~3! is crucial, whereas, in
the theory of defect motion presented here property~4! is
relevant since we always work near the defect cores.

In the simplest models@6,7#, considered here, the auxi
iary field mW , defined everywhere, is assumed to be a Gau
ian field with a normalized correlation functionf defined as

dmn f ~12!5
^mm~1!mn~2!&

AS0~1!S0~2!
~5!

with dmnS0(1)5^mm(1)mn(1)&. Here we use the shorthan
mm(1)5mm(rW1 ,t1). If f is determined within a theory of th
order-parameter correlation function@6,7# it is referred to as
f OP. However, if (rW1 ,t1) and (rW2 ,t2) are constrained to be
the coordinates of defect coresf is the constrained quantit
mentioned in the first paragraph, which is used exclusivel
the calculations below. Near a defect core the linear par
Eq. ~4! allows one to identify the order-parameter correlati
function with the auxiliary field correlation functionf .

It is well established that for late timest following the
quench the dynamics obey scaling and the system ca
described in terms of a single growing lengthL(t), which is
characteristic of the spacing between defects. For a non
served order parameterL(t);t1/2 at late times. Since we
interpretumW u to be the distance to the nearest defect we
ted

-
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pect umW u;L on average. At equal times (t15t25t) in the
scaling regime the auxiliary field correlation function can
written solely in terms of the scaled lengthx5urW2

2rW1u/L(t). Hencef (12)5 f (x).
The emphasis in this paper is on defect densities like

charge density for point defects, given in terms of the or
parameter by@11#

r5d~cW !D, ~6!

where the Jacobian associated with the change of varia
from the set of defect positions to the fieldcW is defined by

D5
1

n!
em1m2•••mn

en1n2•••nn
¹m1

cn1
¹m2

cn2
•••¹mn

cnn
.

~7!

em1m2•••mn
is the n-dimensional fully antisymmetric tenso

and summation over repeated indices in Eq.~7! is implied.
It was shown in a direct manner in@5# that r satisfies the

continuity equation for topological charge:

]r

]t
5¹a@d~cW !Ja

~K !#, ~8!

where the currentJa
(K) is defined as

Ja
~K !5

1

~n21!!
eam2•••mn

en1n2•••nn
Kn1

¹m2
cn2

•••¹mn
cnn

.

~9!

The derivation of Eq.~8! is independent of the details of th
TDGL model, except that Eq.~1! is first order in time. Since
JW (K) is multiplied by the defect-locatingd function we can
replaceKW in JW (K) by the part ofKW that does not vanish a
cW→0. For a nonconserved order parameter this means
we can setKW 5Gc¹2cW in Eq. ~8!. Equation ~8! is in the
standard form of a continuity equation, allowing us to ide
tify the vortex velocity field as

va52
Ja

~K !

D , ~10!

where it is assumed that the velocity field is used ins
expressions multiplied by the vortex-locatingd function.

For string defects the charge density is a vector given
@11#

ra5d~cW !va ~11!

with

va5
1

n!
eam1m2•••mn

en1n2•••nn
¹m1

cn1
¹m2

cn2
•••¹mn

cnn
.

~12!

As in @5# one can obtain the continuity equation satisfied
ra by combining the two identities

v̇a5¹bJab
~K ! ~13!
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and
Kgva5Jab

~K !¹bcg ~14!

to obtain
]ra

]t
5¹b@d~cW !Jab

~K !#. ~15!

The string defect current tensorJab
(K) is defined as

Jab
~K !5

1

~n21!!
eabm2•••mn

en1n2•••nn
Kn1

¹m2
cn2

•••¹mn
cnn

.

~16!

For the important case ofn52, d53 we can write

Jab
~K !5vavb2vbva ~17!

and identify the string velocity as

vW 5
1

v2
~vW 3gW !, ~18!

wheregW 5en1n2
Kn1

¹W cn2
@17#.

We use the continuity equation for topological charge
determine the auxiliary field correlation function. We beg
by examining point defects and require that the exact eq
tion

]

]t
^r~1!r~2!&5¹b

~1!^d@cW ~1!#Jb
~K !~1!r~2!&

1¹b
~2!^r~1!d@cW ~2!#Jb

~K !~2!& ~19!

be satisfied at equal times. The presence of thed functions in
Eq. ~19! enables us to use relation~4! to replacecW with the
Gaussian auxiliary fieldmW in Eq. ~19!. The left-hand side of
Eq. ~19! involves the point defect charge density correlati
function defined by

Gr~12!5^r~1!r~2!&. ~20!

As shown in@1#, Gr factors into a product of Gaussian a
erages, which can be evaluated in terms of the constrainef ,
Eq. ~5!, using standard methods. In the scaling regimeGr

has the form

Gr~12!5
g~x!

L2n
~21!

with g(x) given by

g~x!5n! Fh~x!

x Gn21 ]h~x!

]x
, ~22!

andh given by

h52
g f 8

2p
~23!

with g51/A12 f 2. In the earlier calculation@1# the function
f was undetermined at this point and the assumption
made thatf 5 f OP, which was determined from theories o
the order parameter@6,7#. However, here we can use Eq.~19!
to determinef , the constrained quantity, directly. It is clea
that the left-hand side of Eq.~19! is a complicated nonlinea
a-

s

function of f and its derivatives. The right-hand side of E
~19! involves the evaluation of

Nb~12!5^d@mW ~1!#D~1!d@mW ~2!#Jb
~K !~2!&, ~24!

which, like the evaluation ofGr , factors into products of
averages over then separate components ofmW . We easily
find

Nb~12!5n!GcB~A!n21x̂b , ~25!

where, in the scaling regime,A is given by

A5
1

L2

h

x
~26!

andB is

B5
B̃

L3
~27!

with

2pB̃5
d

dxFgS ¹2f 1
nS~2!

s
f D G . ~28!

We have definedS(2)5(ab^@¹amb#2&/n2 and s5S0 /L2,
which are both constants at late times.

Having compiled these results, it is easy to see that
~19! reduces, in the scaling regime, to

m
d

dx
@hn1xhn21h8#5

d

dx
@B̃hn21#, ~29!

where we have defined the constant

m5
LL̇

2Gc
. ~30!

Equation~29! can be integrated to give

m
d

dx
~xh!5B̃, ~31!

with the integration constant determined to be zero by
condition thatf andh vanish asx→`. Equation~28! shows
us thatB̃ is the derivative of a quantity that vanishes atx
→`. Thus we can integrate Eq.~31! yet again, and use Eq
~23!, to obtain the remarkable final result:

2mx f85¹2f 1
nS~2!

s
f , ~32!

which is linear inf .
For string defects, the analogous calculation involv

evaluating the averages in

]

]t
^ra~1!rb~2!&5¹g

~1!^d@cW ~1!#Jag
~K !~1!rb~2!&

1¹g
~2!^ra~1!d@cW ~2!#Jbg

~K !~2!&.

~33!
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The string charge density correlation function

Gab~12!5^ra~1!rb~2!& ~34!

was first worked out by Liu and Mazenko@1# with the scal-
ing result

Gab~12!5
1

L2n
@GT~x!~dab2 x̂ax̂b!1GL~x!x̂ax̂b#

~35!

where the transverse function is

GT~x!5n! S h

xD n21 ]h

]x
~36!

and the longitudinal function is

GL~x!5n! S h

xD n

. ~37!

h is defined in Eq.~23!. We evaluate the average appeari
on the right-hand side of Eq.~33! using the same technique
that were used in the point defect case and easily obtain

^d@mW ~1!#Jag
~K !~1!rb~2!&5n!GcB~A!n21@ x̂adbg2 x̂gdab#,

~38!

whereA is defined in Eq.~26! andB in Eq. ~27!. Substitution
of the results~35! and ~38! into Eq. ~33! leads to separate
equations for the longitudinal and transverse compone
Both equations reduce to Eq.~32!. Thus the same linea
equation determinesf for both point and string defects.

The solution of Eq.~32! is of the OJK form,

f ~x!5exp2
m

2
x2, ~39!
. D

se
l
49
ts.

where we have used the relation

nS~2!

s
5~2¹2f !ux505nm. ~40!

The constantm is fixed through a choice of the length sca
L, sinceL5A4Gcmt1/2. Since Eq.~32! is linear, the prob-
ability distribution governing the auxiliary field is Gaussia
for all times. We are therefore lead directly, without a
approximation except that the order parameter field can
treated as Gaussian near its zeros, to a self-consistent re

It should be noted that at leading order in a systema
large-N approximation scheme for a color indexN Bray and
Humayun@10# were able to recover the previouslyad hoc
Oono-Puri@9# extension of OJK, which, in turn, givesex-
actly Eq. ~32!. In the development here, Eq.~32! arises with-
out the need for any such approximations.

This work emphasizes the distinction between theories
the order-parameter correlation function, such as in Ref.@6#,
and theories concerning defect correlation functions, whe
appears one can self-consistently use the Gaussian clo
approximation if one uses the OJK form for the auxilia
field correlation function. The theory of order-parameter c
relations does a superior job determining the nonequilibri
exponent governing the decay of two-time autocorrelat
functions@7,18#, but the use of the theory presented here
defect correlations, with its smooth OJK-like auxiliary fiel
avoids the difficulties due to nonanalyticities at smallx. The
reconciliation between theories of the order-parameter co
lation function and the theory presented here, involving
fect densities, is an interesting area of current research.

This work was supported primarily by the MRSEC Pr
gram of the National Science Foundation under Grant Nu
ber DMR-9400379.
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